119 research outputs found

    Transverse decoherence and coherent spectra in long bunches with space charge

    Get PDF
    The transverse bunch spectrum and the transverse decoherence/recoherence following an initial bunch offset are important phenomena in synchrotrons and storage rings, and are widely used for beam and lattice measurements. Incoherent shifts of the particles betatron frequency and of the synchrotron frequency modify the transverse spectrum and the bunch decoherence. In this study we analyze the effects of transverse space charge and of the rf nonlinearity on the decoherence signals. The transverse bunch decoherence and the resulting coherent spectra are measured in the SIS18 synchrotron at GSI Darmstadt for different bunch parameters. Particle tracking simulations together with an analytical model are used to describe the modifications in the decoherence signals and in the coherent spectra due to space charge and the rf bucket nonlinearity.Comment: Submitted on May 7 2012 to Physical Review Special Topics - Accelerators and Beam

    Beam Dynamics Analysis of Dielectric Laser Acceleration using a Fast 6D Tracking Scheme

    Full text link
    A six-dimensional symplectic tracking approach exploiting the periodicity properties of Dielectric Laser Acceleration (DLA) gratings is presented. The longitudinal kick is obtained from the spatial Fourier harmonics of the laser field within the structure, and the transverse kicks are obtained using the Panofsky-Wenzel theorem. Additionally to the usual, strictly longitudinally periodic gratings, our approach is also applicable to periodicity chirped (sub-relativistic) and tilted (deflection) gratings. In the limit of small kicks and short periods we obtain the 6D Hamiltonian, which allows, for example, to obtain matched beam distributions in DLAs. The scheme is applied to beam and grating parameters similar to recently performed experiments. The paper concludes with an outlook to laser based focusing schemes, which are promising to overcome fundamental interaction length limitations, in order to build an entire microchip-sized laser driven accelerator

    Pulsed Electron Lenses for Space Charge Mitigation

    Full text link
    To produce the intense, high-quality hadron beams required by future nuclear and high-energy physics experiments, synchrotrons need to overcome the most prominent intensity limitation i.e., space charge. This Letter characterizes the potential of pulsed electron lenses in detailed 3D tracking simulations, key to which is a realistic machine and space charge model. The space charge limit, imparted by betatron resonances, is shown to be increased by up to 50% using a low symmetric number of electron lenses in application to the FAIR SIS100 synchrotron. Conceptually, a 100% increase is demonstrated with a larger number of electron lenses, which is found to rapidly saturate near the theoretical 2D limit.Comment: 6 pages, 5 figure

    Estimation of beam induced heat load in SIS100 kicker magnets

    Get PDF

    Analytic Modeling, Simulation and Interpretation of Broadband Beam Coupling Impedance Bench Measurements

    Full text link
    In the first part of the paper a generalized theoretical approach towards beam coupling impedances and stretched-wire measurements is introduced. Applied to a circular symmetric setup, this approach allows to estimate the systematic measurement error due to the presence of the wire. Further, the interaction of the beam or the TEM wave, respectively, with dispersive material such as ferrite is discussed. The dependence of the obtained impedances on the relativistic velocity β\beta is investigated and found as material property dependent. The conversion formulas for the TEM scattering parameters from measurements to impedances are compared with each other and the analytical impedance solution. In the second part of the paper the measurements are compared to numerical simulations of wakefields and scattering parameters. In practice, the measurements have been performed for the circularly symmetric example setup. The optimization of the measurement process is discussed. The paper concludes with a summary of systematic and statistic error sources for impedance bench measurements and their diminishment strategy

    Modeling of a Liquid Leaf Target TNSA Experiment using Particle-In-Cell Simulations and Deep Learning

    Full text link
    Liquid leaf targets show promise as high repetition rate targets for laser-based ion acceleration using the Target Normal Sheath Acceleration (TNSA) mechanism and are currently under development. In this work, we discuss the effects of different ion species and investigate how they can be leveraged for use as a possible laser-driven neutron source. To aid in this research, we develop a surrogate model for liquid leaf target laser-ion acceleration experiments, based on artificial neural networks. The model is trained using data from Particle-In-Cell (PIC) simulations. The fast inference speed of our deep learning model allows us to optimize experimental parameters for maximum ion energy and laser-energy conversion efficiency. An analysis of parameter influence on our model output, using Sobol and PAWN indices, provides deeper insights into the laser-plasma system

    Space Charge Effects in Bunches for Different rf Wave Forms

    Full text link
    • …
    corecore